5 research outputs found

    Modeling that Leads to the Prediction of Photocatalytic Coatings Characterization

    Get PDF
    One of the abundant sources of energy on earth is a solar energy which is the clean and safest energy source. It is also known as universal energy, the most important source of renewable energy available today. On realizing that the light source has a crucial role in daily life, several scientists and researchers from centuries ago have studied to establish photo induced systems and utilized them. Long after the knowledge of thermal energy, photovoltaic energy, and photosynthesis in plants, two prominent scientists, Fujishima and Honda, have discovered the electrochemical photolysis of water with the Titanium dioxide electrode which was reported in Nature by Analogy with a natural photosynthesis in 1972 [21]. This discovery leads to the development of heterogeneous photocatalysis in various applications including air and water purification treatment and organic synthesis. Since then it has drawn the wide scientific interest of many academicians and commercial industries. Over the past few decades, the extensive study focused on photocatalysis. Titanium dioxide photocatalysis has been promoted as a leading and emerging green technology for air and water purification systems because of its versatile nature being non-toxic environment friendly, stability to photocorrosion, low cost and potential to function under solar light better than any other artificial light source. It can be exploited for both harvesting solar energy and the destruction of organic and inorganic pollutants, even micro-organisms, in water and air by solar light irradiation. Recently several researches have been focused on improving the operating efficiency of the photocatalytic process on both the mechanistic aspects and other operating parametric aspects including catalyst concentration load, irradiation time, relative humidity, reaction temperature and many more; however, rate limiting properties still remain elusive. Many issues hindering its application on large scale production still exists. Several chemists and materials scientists focused mainly on the synthesis of more efficient materials and the investigation of degradation mechanism while engineers and computational scientists focused mainly on the development of appropriate models both mathematical and statistical, graphical representations to evaluate the intrinsic kinetics parameters and to build the prediction models that allow the scale up or re-design of efficient large-scale photocatalytic reactors. The number of raw data points and raw data files collected by sensors during several experiments grows rapidly over a time. With a large number of raw data sets, a tool to handle such a large raw data set is a practical necessity both for visualization and data analysis along with the computing power. With an aim to build the prediction model of the photocatalytic characterization, scientific computing tools NumPy, SciPy, Pandas, and Matplotlib based on the python programming language are used. For graphical analysis and statistical significance, a custom tool was built using the wxPython package

    An Open Management and Administration Platform for IEEE 802.11 Networks

    Get PDF
    The deployment of Wireless Local Area Network (WLAN) has greatly increased in past years. Due to the large deployment of the WLAN, the immediate need of management platforms has been recognized, which has a significant impact on the performance of a WLAN. Although there are various vendor-specific and proprietary solutions available in the market to cope with the management of wireless LAN, they have problems in interoperability and compatibility. To address this issues, IETF has come up with the interoperability standard of management of WLANs devices, Control And Provisioning of Wireless Access Points (CAPWAP) protocol, which is still in the draft phase. Commercial implementation of this draft protocol from WLAN equipment vendors is rather expensive. Open source community, therefore, tried to provide free management solutions. An open source project called openCAPWAP was initiated. However, it lacks a graphic user interface that makes it hard to implement for novice network administrators or regular customers. Therefore, the researcher designed and developed a web interface framework that encapsulates openCAPWAP at the bottom to provide user-friendly management experience. This application platform was designed to work with any remote web server in the public domain through which it can connect to access points or access controllers through a secure shell to configure them. This open platform is purely open source-based. It is operating system independent: it can be implemented on any open source environment such as regular Linux operating system or embedded operation system small form factor single board computers. The platform was designed and tested in a laboratory environment and a remote system. This development contributes to network administration in both network planning and operational management of the WLAN networks

    Challenges and Solutions for Vehicular Ad-Hoc Networks Based on Lightweight Blockchains

    No full text
    Current research with Vehicular Ad-hoc Networks (VANETs) has focused on adapting an efficient consensus mechanism and reducing the blockchain size while maintaining security. Care must be taken when implementing blockchains within VANET applications to leverage the chains’ strengths while mitigating their weaknesses. These chains can serve as distributed ledgers that provide storage for more than financial transactions. The security provided by longer blockchains constitutes a nearly immutable, decentralized data structure that can store any data relevant to the applications. However, these chains must be adapted to the ad-hoc, resource-constrained environments found in VANETs. In the absence of abundant resources and reliable network connections, chain operation and maintenance must address the challenges presented by highly mobile nodes in novel ways, including situations such as emergency messaging that require real-time responses. Researchers have included different mechanisms to realize lightweight blockchains, such as adding reputation to existing consensus mechanisms, condensing the consensus committees, using geographical information, and monitoring a nodes behavior in attempts to adapt blockchains to these domains. This paper analyzes the challenges and gives solutions for these different mechanisms to realize lightweight blockchains for VANETs

    4.09 Nucleophilic Coupling with Arynes

    No full text

    Recent development of direct asymmetric functionalization of inert C–H bonds

    No full text
    corecore